4,370 research outputs found

    Emission within a Damped Lyman Alpha Absorption Trough: the Complex Sight Line Towards Q2059-360

    Full text link
    We present new spectroscopic observations of the quasar Q2059-360, confirming the existence of an emission feature within the Damped Lyman Alpha (DLA) absorption trough. By observing also at slit positions offset from the quasar, we show that the emission is spatially extended by at least a few arcseconds, and hence confirm that the feature seen must be due to emission rather than unusual absorption characteristics. We find that the DLA trough is very close in redshift to the broad Lyman~α\alpha emission line of the QSO, with the result that the DLA absorption removes much of the peak region of that line. Despite the similarity of the redshifts of the DLA and the QSO, the lack of high-ionization lines of the DLA system and the unresolved widths of the corresponding metal lines indicate that the DLA cloud is not an associated system. The emission feature has a large velocity offset of +490 km/s with respect to the DLA system, and is resolved in velocity, comprising two components with a separation of ~ 300 km/s. We consider three possibilities: (1) Both emission and absorption occur within an object similar to the high redshift Lyman-break galaxies; (2) The emission feature arises from an object distinct from both the DLA absorber and the QSO, perhaps a young star-forming galaxy or a proto-galactic clump. It could be associated with the DLA absorber and perhaps the QSO in a compact group or cluster; (3) The redshifts are such that the emission feature could be due to Narrow Line Region filaments of the QSO, if the DLA absorption covers a sufficiently small angular size to allow the filaments to be seen beyond the edge of the DLA cloud.Comment: 10 pages, 6 figures. Accepted for publication in MNRA

    Simulating a dual beam combiner at SUSI for narrow-angle astrometry

    Full text link
    The Sydney University Stellar Interferometer (SUSI) has two beam combiners, i.e. the Precision Astronomical Visible Observations (PAVO) and the Microarcsecond University of Sydney Companion Astrometry (MUSCA). The primary beam combiner, PAVO, can be operated independently and is typically used to measure properties of binary stars of less than 50 milliarc- sec (mas) separation and the angular diameters of single stars. On the other hand, MUSCA was recently installed and must be used in tandem with the for- mer. It is dedicated for microarcsecond precision narrow-angle astrometry of close binary stars. The performance evaluation and development of the data reduction pipeline for the new setup was assisted by an in-house computer simulation tool developed for this and related purposes. This paper describes the framework of the simulation tool, simulations carried out to evaluate the performance of each beam combiner and the expected astrometric precision of the dual beam combiner setup, both at SUSI and possible future sites.Comment: 28 pages, 23 figures, accepted for publication in Experimental Astronomy. The final publication is available at http://link.springer.co

    Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    Full text link
    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.Comment: 13 pages, 8 figures. To be published in Proceedings of the SPIE, Volume 8446, paper 8446-7

    A low cost scheme for high precision dual-wavelength laser metrology

    Full text link
    A novel method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application where this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical with that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the non-common-path between metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic

    The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials

    Get PDF
    The use of natural compounds as an alternative source of antimicrobials has become a necessity given the growing concern over global antimicrobial resistance. Polyphenols, found in various edible plants, offers one potential solution to this. We aimed to investigate the possibility of using curcumin within the context of oral health as a way of inhibiting and preventing the harmful development of Candida albicans biofilms. We undertook a series of adsorption experiments with varying concentrations of curcumin, showing that 50 ug/ml could prevent adhesion. This effect could be further synergised by the curcumin pretreatment of yeast cells to obtain significantly greater inhibition (>90, p<0.001). Investigation of the biological impact of curcumin showed that it preferentially affected immature morphological forms (yeast and germlings), and actively promoted aggregation of the cells. Transcriptional analyses showed that key adhesins were down-regulated (ALS1 and ALS3), whereas aggregation related genes (ALS5 and AAF1) were up-regulated. Collectively, these data demonstrated that curcumin elicits anti-adhesive effects and that induces transcription of genes integrally involved in the processes related to biofilm formation. Curcumin and associated polyphenols therefore have the capacity to be developed for use in oral healthcare to augment existing preventative strategies for candidal biofilms on the denture surface
    corecore